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Abstract

A new method for computation of X-ray multiple Bragg
diffraction in perfect crystals is presented. The method
is based on the extended dynamical diffraction theory
and implies the reduction of the diffraction equations
to a generalized eigenvalue problem. The advantage of
the proposed approach is the possibility of decreasing
the scattering-matrix size and simplifying the solution
when some X-ray beams are not grazing. The boundary
conditions are also simplified by the analysis of Bloch-
wave structure inside the crystal and the proper selection
of their polarization states.

1. Introduction

In recent years, application of bright synchrotron
radiation to a broad range of X-ray experiments has
aroused interest in X-ray multiple Bragg diffraction,
giving us a new opportunity to measure the fine
structure of multiple Bragg peaks. These measurements
can form the basis for new methods of studying
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crystals and their surfaces (see Golovin, Imamov &
Kondrashkina, 1985; Kazimirov, Kovalchuk, Kohn,
Ishikawa & Kikuta, 1991; Kazimirov, Kovalchuk,
Kohn, Kharitonov, Samoilova, Ishikawa, Kikuta &
Hirano, 1993; Kohn, 1988; Kohn & Samoilova,
1992; Kov’ev & Simonov, 1986; Stepanov, Kondrash
kina & Novikov, 1991; Stepanov, Kondrashkina,
Novikov & Imamov, 1994). However, they require a
proper theoretical interpretation.

The theoretical analysis of X-ray multiple diffraction
in perfect crystals can be based on the dynamical diffrac-
tion equations with respect to 2N wavefield amplitudes
(the factor 2 is due to the vectorial nature of electromag-
netic waves). As shown by Kohn (1976, 1979), these
equations can be reduced to a simply soluble routine
eigenvalue problem for a 2N X 2N scattering matrix.

The problem becomes considerably more complicated
if at least one X-ray beam grazes the crystal surface
and consequently experiences specular reflection. These
grazing cases are of special interest for crystal-surface
studies. Also, accounting for specular reflection is often
important in the rapidly developing optics of soft X-rays.
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Colella (1974) proposed a method of reducing the
diffraction problem for grazing cases to a 4N x 4N
scattering-matrix eigenvalue problem. We should note
that Colella’s work was a great achievement for that
time. But we have now gained experience in two-beam
grazing-incidence diffraction studies, which enables us
to propose essential improvements to Colella’s method.
In particular:

(1) As follows from diffraction physics in the N-beam
diffraction case, there are not 4N but only 2(N + Ns)
strong wavefields inside the crystal, where Ng is the
number of grazing X-ray beams. So, Colella’s method
may supply more solutions than are required. In fact,
the unnecessary 2(N — Ng) solutions are later left out
in his method during the analysis of boundary conditions
for X-rays. However, we can obtain a considerable gain
in the speed and the simplicity of calculations if we
reformulate the eigenvalue problem for the 2(N + Ns) x
2(N + Ns) matrix. For example, in the case of eight-
beam X-ray diffraction with only one grazing beam,
we could operate with an 18 x 18 matrix instead of a
32 x 32 one. A variant of the improved algorithm has
been proposed by Stetsko (1990) but his approach is
valid for cubic crystals only.

(2) The eigenvalue problem was formulated by
Colella for the parameter k/K ~ 1, where k and K
are the magnitudes of X-ray wave vectors inside and
outside the crystal. It is well known that the deviations
of k/K from unity by ~ 107 have a strong effect on
the X-ray diffraction pattern. Therefore, the numerical
computations in Colella’s algorithm must be carried out
with double precision, which is not necessary if we
reformulate the problem using (k/K — 1).

(3) Colella’s method does not directly account for
the change in the exit angles of grazing X-rays as a
function of deviations from the Bragg condition. This
strong effect is now well known from two-beam grazing-
incidence diffraction studies (Afanas’ev & Melkonyan,
1983; Aleksandrov, Afanas’ev & Stepanov, 1984b;
Baryshevsky, 1976) and should be displayed in multiple
diffraction as well.

As a result of the above-listed drawbacks, Colella’s
method has not been used very often. Researchers
have usually confined themsclves to studies of par-
ticular multiple-diffraction cases where an analytical
approach was possible (Hung & Chang, 1989; Stepanov,
Kondrashkina & Novikov, 1991; Tseng & Chang, 1990).

In this paper, we propose a new algorithm for the com-
putation of X-ray multiple Bragg diffraction accounting
for the grazing beams. Our approach is based on the
reduction of the diffraction problem to a generalized
eigenvalue problem and is believed to be free from the
noted shortcomings.

In § 2, the formulation and solution of the diffraction
problem inside a crystal are described. In § 3, we discuss
the boundary conditions. § 4 contains several examples
of testing computations and some conclusions. In the
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Appendix, we give formulae necessary for application of
the proposed algorithm to experimental data processing.

2. Solution of the diffraction
problem inside a crystal plate

As was shown by von Laue (1931), the X-ray wavefield
inside the crystal in the case of N-beam dynamical
Bragg diffraction can be represented as a superposition
of N Bloch waves with wave vectors kj. Vector ampli-
tudes Dy, of these Bloch waves satisfy the following set
of 2N linear equations (see, for example, details in the
book by Pinsker, 1978):

(ki = K3)/Ki1Dh = 23 xow (€ - £ ) DR (1)

Here, Dj, and e}, are the amplitudes and unit vectors of
the expansion of vectors D}, into two mutually normal
polarization states: D, = Dfej + Dfef, e L ky,
ep = [ef X kp]/kp. Indexes s, s’ = o, 7 denote the
polarization states. Indexes h, ' =0, ..., N — 1 list the
reciprocal-lattice vectors h, h’ involved in the diffraction
process. The parameters X are components of the
expansion of the crystal dielectric susceptibility in a
Fourier series with respect to (h — h’). K, and k, are
the magnitudes of X-ray wave vectors outside the crystal
and the respective Bloch-wave vectors inside the crystal.
All the K, have the same value owing to the wavelength
preservation in Bragg diffraction: K = Ky = w. For
the Bloch waves, the following condition is known to
be satisfied:

k, = ko + h. 2)

Equation (1) gives the principal opportunity to express
all the wave amplitudes in terms of the incident-wave
amplitude. Besides, N unknown parameters k; can
be found from (N — 1) equations in the form (2)
and the requirement for the determinant of (1) to be
equal to zero. The latter provides nonzero solutions for
the wavefield amplitudes and leads to a 4Nth-order
polynomial equation with respect to k.

However, we know that the numerical solution of
high-order polynomial equations is unreliable and in-
expedient. Therefore, it is desirable to transform the
problem to another form. This may be done by express-
ing deviations of all k; from w with the help of one
parameter.

Consider the case of a plate-shaped crystal (Fig. 1),
usual in X-ray diffraction optics. Let n be a unit vector
along the internal normal to the upper surface of the
plate. Then, the following equations can be written,
owing to the preservation of the lateral components of
wave vectors at the crystal boundary:

k, =K, + WERN. 3)

Here, ¢, are dimensionless parameters, characterizing
the refraction of X-rays at the surface. Usually e, ~
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[xrh'| = 1076 but for grazing beams the refraction effect
increases to e, ~ ]Xhh:|1/2 ~ 1073,
Using (2) and (3) and the condition K; = K, we
obtain:
K, =Ky + h - wdepn, )

AEh =ep—€0= -zt (7}21 + ah)l/z’ %)

where
Y= (Kn - n)/w (6)

are sines of the angles between the X-ray beams and the
surface and

ar = (Ko + h)* — K§]/w? @)

are the deviations of the incident X-ray from the Bragg
conditions for various h.

So, we have expressed the deviations of all k;, from
w_with the help of one small parameter eo: k? =
w?(1 + 2vhen + €2), where ¢ is related to gy by
(5). However, the derived equations contain the values
7r, which can vary considerably for grazing beams
depending on a4, as is known from two-beam grazing-
incidence diffraction studies (Afanas’ev & Melkonyan,
1983; Aleksandrov, Afanas’ev & Stepanov, 1984b). To
determine these variations, one has to evaluate the scalar
products of both sides of (4) with n and then make use
of (5) and (6). As a result, we obtain

r = (Yo + Yen)? — o, ®
where v,, = (h-n)/w = 2sin @g’) sin @y, @y, is the
angle between h and the surface and le) is the Bragg
angle.

As follows from (8), v, can vary considerably only for
grazing beams, where |y4| < |xnn|'/?, as the variations
of ay in Bragg optics are |an| =~ |xhn-

Let us denote vPr = 4g*™ + Yoh, Where 1(},3'(”) =
Y0 lan=0-* Then, (8) can be rewritten in the form

(h)

= (A" + 9P — an, )

* The introduced parameter 'y,?‘ is 74 oy, =0.
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Fig. 1. Schematic presentation of X-ray multiple diffraction in a crystal
plate.
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where A'y(()h) = v — 'yg ") determines the possible
change in the incident angle when the incident beam
deviates from the exact Bragg position for h. All 7(})3 r(h)
may coincide if the incident beam can simultaneously
satisfy the Bragg conditions for all reciprocal-lattice
vectors involved in the multiple diffraction. Then, we
have 72" = 8+ and A{™ =Ary,. This is always the
case for two- and three-beam scattering.
Using (9) and (5), we obtain

Agh = —7h + A’Y(()h) + ’Yl?r . (10)
To clarify the sign in (10), one can substitute the right-
hand side of (10) into (4) and consider the particular
case ap = 0. The sign must be positive if y2* > 0 and
negative if 72" < 0. Therefore, we can write

Aey = My + (4P = ). an
Substitution of (3), (4) and (11) into the left-hand side
of (1) yields

(ki — K3) /K% = €2 + 2e0(72" + Av{™) + an.  (12)

On the basis of (12), the diffraction equations (1) may
be written in the form

YY G Dy = {200 + Av)eo + €3} D3, (13)

where
(14)

is the scattering matrix. As we have already noted, the
maximum order of the parameter ¢ is €9 < |xnn|!/? =~
®., where . = |x,|'/? is known to be the critical
angle of X-ray total external reflection. Therefore, the
terms with €2 in the right-hand side of (13) can be
neglected for the beams satisfying the condition |yy,| >>
.. As a result, in the absence of grazing beams the
diffraction problem is reduced to the generalized eigen-
value problem GD = ¢¢(2I")D, where G and 2I" are
square matrices and o and D are the eigenvalue and
eigenvector of interest. If the equations are divided by
27, the generalized eigenvalue problem is reduced to
the usual one: G'D = ¢¢D, discussed previously by
Kohn (1976, 1979).

In the case of grazing X-ray beams, the solution of
(13) becomes more complicated as the terms with eg
must be taken into account. Nevertheless, these equa-
tions can also be linearized by enlarging G and D.

Let the number of grazing beams be Ns (0 < Ng <
N), the number of Laue-case beams be N and the
number of Bragg-case beams be Ng (Ng+ Ny + N =
N). Also, let the beams be sorted in decreasing order
over 7,. Then, the first 2N, equations on the right-
hand side of (13) contain large -y, > 0, corresponding

! ! ’
hht = —anOhhs + Xnn (e}, - €5))
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to Laue-case beams. The subsequent 2Ng equations
contain small v, (grazing beams) and therefore keep
€% terms. Finally, the last 2N equations with Y <0
(Bragg-case beams) are again linear with respect to eq.
Consequently, (13) can be represented in the following
matrix form:

GD = ¢o(2I')D + €2PPD, (15)
where 2133, = 2(7Br+A~{")632 is a diagonal matrix,
P is the rectangular 2N x 2Ng projection matrix:

P = (@ @) }ENS rows, (16)

2Ny, 2Ng 2Np

I is the unit diagonal matrix, the O are zero rectangular
matrices and P is the transposed matrix of P.
Introducing the 2Ns component vector Dg:

Ds = EQPD, (17)
we can rewrite (15) in the linear form
GD = &[(2I")D + PDyg. (18)

Finally, (17) and (18) can be represented as one matrix
equation:

(B (5) == (15) (3

Now, the problem of X-ray N-beam dynamical Bragg
diffraction is reduced to the generalized eigenvalue prob-
lem for this 2(N 4+ Ng) x 2(N + Ng) scattering matrix.
The numerical solution of this problem is simply imple-
mented because the respective algorithms are included in
the majority of mathematical libraries (see, for example,
NAG, 1980). We consider that the computation rate of
the new method in some cases can be significantly faster
than the one provided by Colella (1974) owing to the
smaller matrix size.

The numerical solution of (19) brings 2(N + Ngs)
branches of €5’ and (DW, DY) * To determine the
contributions of different D) to the total X-ray wave-
field, we apply the boundary conditions.

19)

3. Boundary conditions

The X-ray wavefield inside the crystal for every hth
X-ray beam can be represented in the form

2(N+Ns)

Di(r) = }:1 C; D39 exp (k- 1), (20)
F=

* The components Dg) are not of physical interest and can be
immediately excluded from consideration.
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where C; is the excitation coefficient of the jth solution;
kY = k(D).

It is shown in (20) that the intensity of each diffracted
beam contains the contributions of all solutions. This
interference displays the multiple-diffraction interaction.
However, it can be proved that there exists a strict
connection between the numbers of Laue-case, Bra%%—
case and grazing-case beams and the types of ;.
Namely:

(i) every Laue-case beam (including the incident one)
provides two solutions (accounting for two polariza-
tion states) with slowly decreasing amplitudes along n:
Imel > 0

(ii) every Bragg-case beam provides two roots with
slowly increasing amplitudes along n: Im eé’ ) < 0,

(iii) every grazing beam provides two solutions with
strongly increasing and two solutions with strongly de-
creasing amplitudes.

Kohn (1991) based his arguments on this statement
for multiple diffraction without grazing beams. Alek-
sandrov, Afanas’ev & Stepanov (1984a) proved this
mathematically for two-wave grazing-incidence diffrac-
tion. The simplest argument is that the solutions describe
Bloch waves and there should exist a Bloch wave
propagating along every beam outside the crystal.

So, in total, we have: )

(A) 2N roots with large Im e(()] ) s,

(B) 2Ny, roots with small Im 5((,’ ) S0,

(C) 2Np roots with small Im e((,] ) <0,

(D) 2N roots with large Im s((,]) < 0.

For convenience, we suppose the roots are sorted
in the sequence above. Consider a crystal of practical
thickness (e.g. t > 10 um), so that the roots of classes (A)

and (D) satisfy the condition |Im e((,j )‘wt >> 1. In this

case, the last 2N roots with large Im e((,’ ) < 0 can be ex-
cluded from consideration because the respective Bloch
waves display large amplitudes at the lower boundary of
the plate that are not physically real.* So, the respective
2Ns excitation coefficients C; are assumed equal to
zero.

As the solutions of class (D) are not excited, we have
to put only 2Ns + 2Ns + 2Ns + 2Ny, + 2Ng = 2N
boundary conditions for the determination of the other
2N coefficients C9). Let us consider these conditions
separately for three types of beams.

3.1. Laue-case beams

The intensity of Laue-case beams at the upper (en-
trance) surface of the crystal plate is equal to unity for

* However, this does not imply that the grazing beams are not able to
leave the plate through the lower boundary because their total wavefield
determined by (20) contains the contributions of the other solutions. See
also the works by Kishino (1971), Kishino, Noda & Kohra (1972) and
Hartwig (1976) conceming this problem.
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the incident beam and to zero for other beams. Therefore,
the following 2N, equations can be written:

2N )
2(0) = > C;DpY’ = 8y cos Agp,, (1)
Jj=1

where Ap, are the angular deviations of the incident-
wave polarization plane from e.

3.2. Bragg-case beams

Similarly, the intensity of Bragg-case waves at the
lower boundary of the plate is also equal to zero (another
2Np equations):*

2N ) :
Di(t) = Y C;iD;? exp(iwed’t) = 0.  (22)
=

3.3. Grazing beams

The boundary conditions for grazing beams are set
at both upper and lower surfaces. The conditions at the
upper surface consist of 2N equations for X-ray electric
fields and 2N equations for their derivatives. The latter
conditions appear because of accounting for refraction.
Now, there are 4Ng conditions, but they contain 2Ng

unknown amplitudes E;(R) of vacuum grazing beams

above the surface. Excluding EZ(R), one can arrive at
2Ns equations derived by Colella (1974). Please note
that these equations are considerably simplified if vectors
e}, of the grazing waves are chosen parallel to the crystal
surface (see, for example, Aleksandrov, Afanas’ev &
Stepanov, 1984b). In this case, we have

T L ) ()
2 CiDy’(8no + €57 /270) = 6o cos Ap,. (23)
i=1

The number of conditions at the lower boundary is
also equal to 4N but the conditions for the wavefields
and their derivatives coincide because the wavefields do
not include class (A) (‘grazing’) solutions at the lower
boundary owing to their strong damping. As a result,
we have only 2Ns equations, which determine 2Ng

amplitudes EZ(T) of vacuum grazing beams below the
boundary and do not provide the additional conditions
for Cj.

Thus, the total set of boundary conditions consists of
2N equations. They can be presented in the form of one
matrix equation:

2N ( .
> CiFD = 69 cos Ap,, (24)
J=1

* |We can exclude a part of the ‘Bragg-case’ solutions satisfying
the condition: Im sf,’ Dt << —1, if the crystal is sufficiently thick.
Simultaneously, the boundary conditions for the respective number of
Bragg-case beams with the smallest (i.e. the closest to grazing) v, are

also excluded. This is the same procedure as for class (D) (‘grazing’)
roots.
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where the matrix F,f(j) is given by

D;(J ) for Laue-case
. ) beams,
F’-:(j) _ DZ(]) exp(iwe((f )t) for Bragg-case
_ , beams,
DZ(’ )(6,,0 + eff ) /2v0) for grazing
beams.

(25)
Equations (25) can be solved numerically by the
Gaussian method.*
If the C; are found, the reflection coefficients of
vacuum X-ray waves are evaluated according to the
formulae

Py = (|Revn|/70) 2 |Ds(2) — 6nob.0 cos Ap,|?, (26)

where 2z = 0 for the beams leaving the crystal through
the upper (entrance) surface and z = ¢ for the transmitted
beams. Equation (26) is applied to Bragg-case beams
at the upper surface, to Laue-case beams at the lower
surface and to grazing beams at both surfaces.

4. Numerical examples and discussion

The proposed method has been implemented in a pro-
gram computing three- to eight-beam X-ray diffraction
and some test computations have been carried out.

In the absence of grazing beams, the results of the
program coincide completely with those of Kohn (1976,
1979). Therefore, let us consider the grazing cases,
where testing is more complicated.

Results from computations for three-beam X-ray re-
flection 000, 220, 202 from a germanium crystal plate
with (111) surface orientation are shown in Fig. 2. The
selected wavelength, A = 3.463683 A, provides coplanar
diffraction geometry where all the beams graze along the
crystal surface. That is the case considered by Hung &
Chang (1989) within an analytical formalism.

In Fig. 2(a), the computations are carried out for
Q220 = a2 = 100|xo|- In this case, the rocking
curve for beam 000 displays the shape of the X-ray
specular reflection curve from amorphous material. This
is reasonable because the reflections 220 and 202 are not
excited significantly owing to the large «.. The reflection
coefficients for 220 and 202 are equal to zero because
neither of these beams can leave the crystal owing to
the total internal reflection effect [as follows from 8),
parameters 7229 and 392 are imaginary numbers].

Fig. 2(b) presents the computations for azo9 = 0 and
az202 = 100|xo|, i.e. practically for two-beam diffraction.
Respectively, the curves 000 and 220 in the figure

* The boundary conditions for a very thin crystal are formulated
identically but with account taken of the refraction of the grazing waves
at the lower boundary. As a result, 2(N 4 Ns) conditions for 2(N+Ns)
values £’ are obtained.
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coincide with the calculations based on two-beam theory
by Afanas’ev & Melkonyan (1983) and Baryshevsky
(1976). In particular, the angular dependence for 000 dis-
plays the two-threshold specular reflection effect noted
by Baryshevsky (1976).

Finally, the computations in Fig. 2(c) are carried out
for the case agy9 = ag92 = 0, when both 220 and
202 are excited simultaneously. We see that the two-
threshold effect of the specular reflection is enhanced by
three-beam diffraction. At the same time, the intensity
maxima for 220 and 202 are decreased because these
reflections ‘share’ the incident intensity.

The computations presented correlate in general with
the data of Hung & Chang (1989). Some deviations are
due to the accounting for absorption in our data being
different from that of Hung & Chang (1989).

Concluding, we can state that the method has been
implemented and tested. We believe that it can be suc-
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Fig. 2. Rocking curves of three-beam grazing-incidence diffraction 000,
220, 202 in germanium.
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cessfully used in applications of X-ray multiple diffrac-
tion to crystal-surface studies and in multibeam optics
of soft X-rays. Additionally, it is applicable to studies
of reflection high-energy electron diffraction.

The authors are pleased to acknowledge Mrs J.
Nowikow and Dr R. Garcia for very helpful discussions.

APPENDIX

Here, we give some equations that are useful for the
application of this algorithm to experimental data pro-
cessing.

We present the incident wave vector in the following
form:

Ko = K {1-[(62 +63)/2]} + w(ai8;: +az8;). 27)

Here, KB* is the wave vector satisfying exact Bragg
conditions for h; and hjy; 6, and 6, are the angular
deviations of K, from K(‘)a‘; a; and a, are the unit
vectors specifying the directions of variations of these
angles in the experiment {a; L ko, a; = (a; x ko) /w].
Substituting (27) into (7) and (8), we obtain

an = ap® + [2(a; - h)/w]f; + [2(az - h)/w]b2

+2sin2 64 (62 + 62), (28)
Yo =70+ (ar-n)f; + (az-n)fz,  (29)

where o = 0, ap" = 0, aP" = [(KP+h,)2-K2]/w?,
n > 2.

Equations (27) and (28) are applicable to the simu-
lation of multiple-diffraction experiments irrespective of
the presence or absence of grazing beams.

Note that the quadratic terms in  are included in (27)
in view of possible large-scale variations of these angles.
To illustrate this, let us consider the example analyzed
in §3 and choose the direction of §; variations to be
along the surface (a; = [n x kg]/w). Then, §, is varied
parallel to the surface and one can easily find

ap, = 2sin® @g')a';’,

30

Yo =75" + 2. G0
These equations show that the variations of the incidence
angle cause the changes in all a; due to 62 terms.
Therefore, a straightforward measurement of the curves
presented in Fig. 2 is not possible. This fact has been
noted by Stepanov (1991).
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